Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cory A. Jaska, Alan J. Lough* and Ian Manners

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail:
alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
Some non-H atoms missing
Disorder in solvent or counterion
R factor $=0.036$
$w R$ factor $=0.087$
Data-to-parameter ratio $=23.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

$\operatorname{Bis}\left(\mu\right.$-phenylphosphido- $\left.\kappa^{2} P: P\right)$ bis\{[1,2-(dicyclohexyl-phosphino)ethane- $\left.\kappa^{2} P, P^{\prime}\right]$ platinum(I)\} dichloride bis(dichloromethane) hexane solvate

In the title compound, $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{P}\right)_{2}\left(\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{P}_{2}\right)_{2}\right] \mathrm{Cl}_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot-$ $\mathrm{C}_{6} \mathrm{H}_{14}$, the cation crystallizes as a phosphido-bridged Pt^{I} dimer $[\mathrm{Pt}(\text { dcype })(\mu-\mathrm{PPhH})]_{2} \mathrm{Cl}_{2}$, with crystallographic $2 / m$ symmetry [dcype is 1,2-bis(dicyclohexylphosphino)ethane]. The $\mathrm{Pt}_{2} \mathrm{P}_{2}$ core forms a planar distorted square capped by chelating bisphosphine ligands, resulting in a distorted square-planar geometry for the Pt atoms. In the $\mathrm{Pt}_{2} \mathrm{P}_{2}$ core, the $\mathrm{Pt}-\mathrm{P}$ bond length is $2.3403(9) \AA$, with a narrow $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle of 76.87 (6) ${ }^{\circ}$ and a wide $\mathrm{Pt}-\mathrm{P}-\mathrm{Pt}$ angle of 103.13 (6) ${ }^{\circ}$. The bite angle of the dcype ligand is $85.70(6)^{\circ}$, with a $\mathrm{Pt}-\mathrm{P}$ bond length of $2.2993(11)^{\circ}$.

Comment

As part of our investigations into the mechanism of catalytic dehydrocoupling of phosphine-borane adducts using late transition metal catalysts (Jaska et al., 2003), we explored the reaction of the platinum(II) dihydride complex cis[PtH_{2} (dcype)] with various phenylated phosphines and phos-phine-borane adducts bearing $\mathrm{P}-\mathrm{H}$ bonds. The primary products from these reactions were the monosubstituted complexes cis- $[\mathrm{PtH}(\mathrm{PPh} R \cdot L)($ dcype $)]\left(R=\mathrm{Ph}, \mathrm{H} ; L=\mathrm{BH}_{3}\right.$ or no substituent), formed via a dehydrocoupling reaction at the metal centre (Jaska et al., 2004). In one case (for $R=\mathrm{H}, L=$ BH_{3}), however, a reaction between the hydride ligand and the chlorinated solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was found to afford the title compound $[\mathrm{Pt}($ dcype $)(\mu-\mathrm{PPhH})] 2 \mathrm{Cl}_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{12}$, (I).

Similar complexes include $\left[\mathrm{Pt}(\mu-\mathrm{PPhH})\left(\mathrm{PPh}_{2} \mathrm{Me}_{2}\right)_{2}\right]_{2} \mathrm{Cl}_{2}$, prepared from the reaction of $(\mathrm{PPh})_{5}$ with $\left(\mathrm{PPh}_{2} \mathrm{Me}_{2} \mathrm{PtCl}_{2}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Parkin et al., 1990), and $[\mathrm{Pt}(\mu-\mathrm{MesPH})(\mathrm{dppe})]_{2} \mathrm{Cl}_{2}$, prepared by the reaction of $\left[\mathrm{PtCl}\left(\mathrm{MesPH}_{2}\right)(\mu-\mathrm{MesPH})\right]_{2}(\mathrm{Mes}$ is 2,4,6-trimethylphenyl) with dppe [dppe is 1,2-bis(diphenylphosphino) ethane] (Kourkine et al., 1996).

The structure of the $[\mathrm{Pt}(\text { dcype })(\mu-\mathrm{PPhH})]_{2}$ cation in (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. The cation has $2 / m$ symmetry at the centre of the $\mathrm{Pt}_{2} \mathrm{P}_{2}$ core with the twofold axis running through the two Pt atoms and the centre of both $\mathrm{C}-\mathrm{C}$ bonds of the ethane linkages of the dcype ligands, while the mirror plane runs through the two bridging P atoms, all atoms of the central phenyl groups and the hydride atoms.

Received 5 October 2004 Accepted 7 October 2004 Online 22 October 2004

The $\mathrm{Pt}_{2} \mathrm{P}_{2}$ core forms a distorted square plane capped by chelating bis-phosphine ligands, resulting in a distorted square-planar geometry for the Pt atoms. In the $\mathrm{Pt}_{2} \mathrm{P}_{2}$ core, the $\mathrm{Pt}-\mathrm{P}$ bond length is 2.3403 (9) \AA, with a narrow $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle of $76.87(6)^{\circ}$ and a wide $\mathrm{Pt}-\mathrm{P}-\mathrm{Pt}$ angle of $103.13(6)^{\circ}$. The bite angle of the dcype ligand is $85.70(6)^{\circ}$, with a $\mathrm{Pt}-\mathrm{P}$ bond length of $2.2993(11)^{\circ}$.

Experimental

Under an atmosphere of N_{2}, a colourless solution of $\mathrm{PhPH}_{2} \cdot \mathrm{BH}_{3}$ $(0.007 \mathrm{~g}, 0.06 \mathrm{mmol})$ was added to a red-orange solution of cis[PtH_{2} (dcype) $](0.035 \mathrm{~g}, 0.057 \mathrm{mmol}$; Jaska et al., 2004) in toluene $(5 \mathrm{ml})$. The solution was stirred for 24 h at 288 K , and the volatiles removed to yield the intermediate complex cis$\left[\mathrm{PtH}\left(\mathrm{PPhH} \cdot \mathrm{BH}_{3}\right)(\right.$ dcype $\left.)\right]$. The resulting solid was washed with hexanes (15 ml) and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes ($5: 1 ; 10 \mathrm{ml}$) by slow evaporation over 3-4 d at 288 K to afford colourless blocks of (I).

Crystal data

$\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{P}\right)_{2}\left(\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{P}_{2}\right)_{2}\right] \mathrm{Cl}_{2}--$ $2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{14}$
$M_{r}=1780.43$
Monoclinic, C2/m
$a=25.2586$ (9) Å
$b=13.9813$ (5) \AA
$c=12.3080(5) \AA$
$\beta=111.348$ (2) ${ }^{\circ}$
$V=4048.3$ (3) \AA^{3}

$D_{x}=1.461 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 14701 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=3.81 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Block, colourless
$0.12 \times 0.10 \times 0.10 \mathrm{~mm}$
$Z=2$

Data collection

Nonius KapppaCCD diffractometer φ scans and ω scans with κ offsets
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.636, T_{\text {max }}=0.683$
14701 measured reflections
4810 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.087$
$S=1.09$
4810 reflections
205 parameters
H atoms treated by a mixture of independent and constrained refinement

4223 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-32 \rightarrow 30$
$k=-16 \rightarrow 18$
$l=-15 \rightarrow 15$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0435 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=2.26 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.38 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
Extinction coefficient: 0.00110 (10)

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Pt} 1-\mathrm{P} 1$	$2.2993(11)$	$\mathrm{H} 1 \mathrm{P}-\mathrm{P} 2$	$1.43(6)$
$\mathrm{Pt} 1-\mathrm{P} 2$	$2.3403(9)$		
$\mathrm{P} 1^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{P} 1$	$85.70(6)$	$\mathrm{P}^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{P} 2$	$76.87(6)$
$\mathrm{P} 1^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{P} 2$	$166.11(4)$	$\mathrm{Pt}^{1 i}-\mathrm{P} 2-\mathrm{Pt} 1$	$103.13(6)$
$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{P} 2$	$100.24(4)$		
Symmetry code: (i) $-x, y, 1-z ;$ (ii) $-x,-y, 1-z$.			

During the structure refinement, a region of electron density was identified as a highly disordered molecule of hexane. Attempts to model this electron density as the hexane molecule were not successful due to the extent of the disorder. In the final structure

Figure 1
View of the cation in (I) with the atom-labelling scheme. The anions and solvent molecules are not shown, and H atoms have been omitted. Displacement ellipsoids are at the 30% probability level and atoms labelled with suffixes A and B are related by the symmetry codes ($-x, y$, $1-z$) and ($-x,-y, 1-z$), respectively.
model, the contribution of the electron density from the hexane molecule has been removed from the intensity data using the program SQUEEZE in PLATON (Spek, 2003). This greatly improved the precision of the refinement but did not affect the geometric parameters of the rest of the structure. The contribution from the hexane has been included in the empirical formula to give the correct calculated density, absorption coefficient and molecular weight. The Cl^{-}counter-ion is disordered over two sites, which are on twofold axes. Similarly, a twofold axis runs through the central CH_{2} group of the dichloromethane solvent. The C atom and the two H atoms are all disordered over two sites on the twofold axis. All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.95 to $1.00 \AA$, and included in the refinement in ridingmodel approximation, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the carrier atom. The H atom bonded to P 1 was refined independently with an isotropic displacement parameter. The highest residual peak in the final difference Fourier lies on a twofold axis, $0.84 \AA$ from C 1 (but is not chemically significant), while the deepest hole is $0.71 \AA$ from Cl2

Data collection: COLLECT (Nonius, 1997-2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Jaska, C. A., Dorn, H., Lough, A. J. \& Manners, I. (2003). Chem. Eur. J. 9, 271281.

Jaska, C. A., Lough, A. J. \& Manners, I. (2004). Unpublished results.
Kourkine, I. V., Chapman, M. B., Glueck, D. S., Eichele, K., Wasylishen, R. E., Yap, G. P. A., Liable-Sands, L. M. \& Rheingold, A. L. (1996). Inorg. Chem. 35, 1478-1485.

metal-organic papers

Nonius (1997-2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Parkin, I. P., Slawin, A. M. Z., Williams, D. J. \& Woolins, J. D. (1990). Inorg. Chim. Acta, 172, 159-163.
Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.12 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

